4.5 Article

Part-Scale Finite Element Modeling of the Selective Laser Melting Process With Layer-Wise Adaptive Remeshing for Thermal History and Porosity Prediction

出版社

ASME
DOI: 10.1115/1.4047733

关键词

additive manufacturing; modeling and simulation; adaptive remeshing; thermal history prediction; porosity prediction

资金

  1. DARPA-Young Faculty Award

向作者/读者索取更多资源

Predicting the part thermal history during the selective laser melting (SLM) process is critical to understand the influence of the process parameters to the part quality. Existing finite element based thermal analysis is mainly associated with simplifications in mesh configuration, heat source model, and domain size. The proposed work presents an efficient adaptive remeshing technique that enables part-scale SLM process simulations and helps reduce model size without sacrificing accuracy. The proposed work enables the part-scale simulation computationally efficient using existing commercial solvers. In this paper, the SLM process simulation for an entire part was developed considering different process parameters. The model predicts the influence of the process parameters on part thermal history, melt pool statistics, and lack-of-fusion porosity. The predicted results find an agreement with the experimental results in literature. Furthermore, the remeshing technique is demonstrated to be more computationally efficient than the existing element death and birth approach and also shows clear advantages compared with existing adaptive remeshing approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据