4.7 Article

Leakage and swell in emulsion liquid membrane systems: Comparing continuous stirred-tank reactor and batch experiments

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jiec.2020.03.013

关键词

Emulsion liquid membrane; Leakage; Breakage; Stability; CSTR; Swell

资金

  1. United States Environmental Protection Agency

向作者/读者索取更多资源

Emulsion liquid membrane (ELM) systems can efficiently extract and concentrate dilute solutes in a variety of applications and chemistries. Internal phase leakage and swell reduce extraction efficiency and concentration, which limits their use. Nearly all studies of ELM leakage and swell have been conducted in batch systems, although continuous flow systems are preferred for industrial applications. The objective of this investigation was to assess the ability of batch experiments to predict continuous system performance with respect to internal phase leakage and swell. The effects of five factors (surfactant concentration, osmotic pressure, membrane viscosity, internal phase volume fraction, and extraction vessel stir rate) on leakage and swell were measured in a continuous stirred-tank reactor (CSTR) system without solute extraction. The results were compared with those reported previously for a batch system with the same experimental conditions and vessel geometry. Overall, the effects of the five factors in the CSTR system are qualitatively consistent with the batch system observations, suggesting that the influential variables in the batch system are similarly influential in the CSTR system. Leakage and swell in the CSTR and batch systems are correlated with similar amounts of swell in both systems but consistently smaller leakage in the CSTR configuration. (C) 2020 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据