4.7 Article

A unified depth-averaged approach for integrated modeling of surface and subsurface flow systems

期刊

JOURNAL OF HYDROLOGY
卷 591, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2020.125339

关键词

Surface-water ground-water interaction; Shallow water model; Dam-break wave through porous media

资金

  1. Department of Science and Technology, Government of India [DST/INSPIRE/04/2017/001936]

向作者/读者索取更多资源

A two-dimensional depth-averaged continuum framework is developed for simulating the interaction of flows outside and within porous media. A unique set of generalized equations applicable to both surface and subsurface systems is derived originating from conservation laws of microscopic variables with first volume-averaging and then integrating vertically. The model is free of ad-hoc coupling as interface conditions are satisfied implicitly owing to the generalized nature of the governing equations. The set of depth-integrated equations (unconditionally hyperbolic) is resolved by employing a Total-Variation-Diminishing MacCormack scheme. The developed model is validated with four one-dimensional experimental test-cases (containing both Darcy and non-Darcy regimes) and applied to a demonstrative two-dimensional scenario having various interface conditions. Results obtained from the proposed framework highlights the potential applicability of the generalized model for diverse time-scales and vertical/ sloping interface conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据