4.7 Article

General synthesis of carbon and oxygen dual-doped graphitic carbon nitride via copolymerization for non-photochemical oxidation of organic pollutant

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 394, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.122578

关键词

Graphitic carbon nitride; Nonmetal dual doping; Electronic structure; Persulfate; Electron transfer

资金

  1. National Natural Science Foundation of China [51808142, 51838005, 51538013]
  2. National Key Research and Development Plan [2016YFA0203200]
  3. Pearl River Talent Recruitment Program of Guangdong Province
  4. Science Starting Foundation of Guangzhou University [69-18ZX10299]

向作者/读者索取更多资源

Earth-abundant, environmental-benign and durable catalysts are of paramount importance for remediation of organic pollutants, and graphitic carbon nitride (g-C3N4) is a promising nonmetallic material for this application. However, the catalytic oxidation on g-C3N4 suffers from low efficiency because of its chemical inertness if not irradiated with light. Herein, we develop a facile copolymerization strategy for the synthesis of carbon and oxygen dual-doped g-C3N4 using urea as g-C3N4 precursor and ascorbic acid (AA) as carbon and oxygen sources, which induces electronic structure reconfiguration. By replacing AA with other organic precursors, a series of C and O dual-doped g-C3N4 are successfully prepared, demonstrating the generally of the developed methodology. As a demonstration, the C and O dual-doped g-C3N4 using AA as the organic precursor (CN-AA(0.3)) exhibits pronouncedly enhanced catalytic activity in peroxymonosulfate (PMS) activation for organic pollutant degradation without light irradiation compared with pristine g-C3N4 and single oxygen-doped g-C3N4. Experimental and theoretical results revealed the electron-poor C atoms and electron-rich O atoms as active sites for PMS activation in terms of simultaneous PMS oxidation and reduction. This work offers a universal approach to synthesize nonmetal dual-doped g-C3N4 with reconfigured electronic structure, stimulating the development of g-C3N4-based materials for diverse environmental applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据