4.7 Article

In-situ fabrication of nanoarchitectured MOF filter for water purification

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 392, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.122164

关键词

Metal-organic frameworks; ZIF-67; Sulfate radical; Water purification

资金

  1. National Natural Science Foundation of China (NSFC) [51878352]
  2. PAPD of Jiangsu higher education institutions
  3. China Scholarship Council (CSC)
  4. Shanghai Tongji Gao Tingyao Environmental Science and Technology Development Foundation

向作者/读者索取更多资源

Sulfate radical (SO4 center dot-)-based advanced oxidation processes (SR-AOPs) hold great promise for water purification due to their strong oxidizing and high selectivity. Recently, metal-organic frameworks (MOFs) as catalysts for peroxymonosulfate (PMS) activation to generate SO4 center dot- have shown a bright future. However, the intrinsic nature of powder MOF nanocrystals, such as brittleness and poor processability, largely disturb their large-scale applications in practical. Herein, we develop an in situ growth method to prepare MOF fillers. ZIF-67 in situ growth on the polyacrylonitrile (PAN) fibers lead to the ZIF-67/PAN composite fibers with high loading (up to 50 wt %). The loading ZIF-67 can retain their morphology and structure, which is comparable with that of pristine ZIF-67 powder. The ZIF-67/PAN filter demonstrates a high efficiency for organic pollutants removal by PMS activation. Furthermore, through the fabrication of filtration device, the dynamic catalysis results show the ZIF-67/PAN filter is a promising material for water purification. This work provides a new method for applying MOFs-based functional materials to practical water remediation and other separation applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据