4.3 Article

The Analysis of 3D Printer Dust for Forensic Applications,,

期刊

JOURNAL OF FORENSIC SCIENCES
卷 65, 期 5, 页码 1480-1496

出版社

WILEY
DOI: 10.1111/1556-4029.14486

关键词

criminalistics; trace evidence; 3D printer; polylactic acid; PLA; acrylonitrile butadiene styrene; ABS; nanoparticles; dust analysis

资金

  1. National Institute of Justice, Office of Justice Programs, U.S. Department of Justice [2015-DN-BX-K033]

向作者/读者索取更多资源

3D printers are becoming increasingly efficient and economical, and thus more widespread and easily accessible to consumers and businesses. They have been used to print nefarious objects such as guns and suppressors. Previous research has documented the release of dust particles during the printing process; however, little has been written about the morphology and chemical features that define the dust emitted by these printers. This study was undertaken to recover, analyze, and identify the dust produced during the printing process in the context of forensic trace evidence analysis. Samples were collected from a variety of 3D fused deposition modeler printers, representing both consumer and commercial grade models. This work focused on printers that use thermoplastic filaments composed of acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA), two of the most commonly used filament polymers. Swabs were used to collect dust within the printer chamber and then processed to isolate the dust particles. Particles produced from ABS filaments are most easily recognized via light microscopy through a combination of color, morphology, and fluorescence. The composition of these particles can be confirmed through analysis by either FTIR or Raman microspectroscopy. These methods can also be used to identify ABS fillers and pigments within the printer dust particles. In contrast, dust from PLA printers consistently contained finer, submicron-sized particles that could be observed by field emission scanning electron microscopy. Because the size of the particles precludes their identification using vibrational spectroscopy methods, pyrolysis-GC-MS was used to confirm the presence of PLA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据