4.4 Article

Surface runoff and nutrient dynamics in cover crop-soybean systems in the Upper Midwest

期刊

JOURNAL OF ENVIRONMENTAL QUALITY
卷 50, 期 1, 页码 158-171

出版社

WILEY
DOI: 10.1002/jeq2.20135

关键词

-

资金

  1. Minnesota Department of Agriculture -Water Quality Program [00042968]

向作者/读者索取更多资源

This study found that winter cover crops have the potential to reduce nutrient loss in surface runoff, but the actual impact depends on specific regions and crop types. Winter cover crops have an influence on surface water quality and can help reduce runoff and total suspended solids during high-intensity spring rains.
Relay-cropping of the novel oilseeds winter camelina (Camelina sativa L.) and pennycress (Thlaspi arvense L.) with short-season crops such as soybean [Glycine max (L.) Merr.] can provide economic and environmental incentives for adopting winter cover crop practices in the U.S. Upper Midwest. However, their ability to reduce nutrient loss in surface runoff is unknown. Accordingly, surface runoff and quality were evaluated during three seasonal phases (cover, intercrop, and soybean) over 2 yr in four cover crop-soybean treatments (pennycress, winter camelina, forage radish [Raphanus sativus L.], and winter rye [Secale cereale L.]) compared with no-till and chisel-till fallow treatments. Runoff was collected with Gerlach troughs and assessed for concentrations and loads of NO3--N, total mineral N, soluble reactive P (SRP), and total suspended solids (TSS). Cumulative runoff and nutrient loads were greater during the winter cover phase because of increased snow melt and freeze-thaw released nutrients from living vegetation. In contrast, cumulative TSS was greater during intercrop and soybean phases due to high-intensity rainfall events with an open soybean canopy. Average TSS loads during the intercrop phase were reduced by 75% in pennycress compared with fallow and radish treatments. During the soybean phase, average TSS, total mineral N, and SRP loads were generally elevated in cover crop treatments compared with no-till. Overwintering cover crops may contribute to mobility of nutrients solubilized from living or decomposing vegetation; however, this was balanced by their potential to reduce runoff and TSS during high-intensity spring rains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据