4.7 Article

Z-scheme binary 1D ZnWO4 nanorods decorated 2D NiFe2O4 nanoplates as photocatalysts for high efficiency photocatalytic degradation of toxic organic pollutants from wastewater

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 268, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2020.110677

关键词

Wastewater treatment; Environmental remediation; NiFe2O4, ZnWO4; Oxide nanoparticles; Heterostructures; Z-scheme; Antibiotic tetracycline; Chemical pollutants

资金

  1. National Research Foundation of Korea (NRF) - Korea government [2020R1A2C1012439, 2019R1F1A1060655]
  2. National Research Foundation of Korea [2019R1F1A1060655] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

In this study, dimensionally coupled Z-scheme binary nanocomposites from two-dimensional (2D) NiFe2O4 nanoplates and one-dimensional (1D) ZnWO4 nanorods are prepared for efficient degradation of an antibiotic tetracycline (TC) and organic dye rhodamine B (RhB) under solar illumination. NiFe2O4/ZnWO4 nanocomposites were synthesized by a simple and ecological in-situ hydrothermal method without the use of surfactants. Structural and morphological studies revealed the formation of heterostructure and 1D ZnWO4 nanomds were uniformly distributed over the surface of NiFe2O4 nanoplates. Light-harvesting capability was improved and optimized by loading with different amounts of ZnWO4. Photoluminescence analysis demonstrated inhibited nature of the recombination of photo-excited charge carriers in the nanocomposites. Photocatalytic experiments revealed that the nanocomposite exhibited improved Z-scheme electron-transfer for the degradation of TC under solar illumination. In particular, NFZW-20 nanocomposite demonstrated superior photocatalytic degradation of TC of approximately 98% within 105 min. Furthermore, their photocatalytic performance was investigated by RhB dye under the solar irradiation to achieve 98% of degradation of RhB in 70 min. Improved photocatalytic activities are attributed to the Z-scheme electron-transfer mechanism, which could enhance the superior ability of light absorption and reduced recombination rate of the photogenerated charge carriers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据