4.7 Article

Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 267, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2020.110656

关键词

Zinc oxide nanoparticles; Cation valence; Ionic strength; Aggregation and sedimentation; Derjaguin-landau-verwey-overbeek (DLVO)

资金

  1. National Natural Science Foundation of China [51908252]
  2. China Postdoctoral Science Foundation [2019M652274]
  3. Social Development Project of Zhenjiang [2016014]
  4. Qing Lan Project for Young Core Teachers in University of Jiangsu Province
  5. Foundation from Marine Equipment and Technology Institute for Jiangsu University of Science and Technology, China [HZ20190004]

向作者/读者索取更多资源

The effects of pH, cation valence, and ionic strength (IS) on the stability and aggregation behavior of zinc oxide nanoparticles (ZnO NPs) were investigated in this study. Results showed that ZnO NPs were most prone to aggregation at the isoelectric point (pH = 8.7), with an aggregation rate (Delta D/Delta t) of 30.1. ZnO NPs showed a greater propensity for dissolution at lower pH (pH < 7), and Zn2+ was more rapidly released into the aqueous phase in acidic solutions than neutral or alkaline conditions. The C/C-0 of ZnO NPs was about 21.56% and remained stable in acidic solution of pH 4.0. Additionally, slow sedimentation with a C/C-0 ratio of 95.0% was observed due to an increase in repulsive interactions between nanoparticles under pH = 10. The effect of cations on the Delta D/Delta t of ZnO NPs decreased in strength as follows: Ca2+ > Mg2+ > K+ > Na+. High-valence metal cations (Ca2+, Mg2+) were more competitively adsorbed onto the surface of ZnO NPs with a hydrogen atom due to Coulomb's law, increasing the zeta potential and stabilizing the suspension of ZnO NPs at IS < 10 mM. Furthermore, compression of the electric double layer (EDL) became stronger than electrostatic adsorption with increasing IS, reaching a maximum Delta D/Delta t of 23.3 (Ca2+, pH = 7, IS = 1 M). The C/C-0 ratio of ZnO NPs decreased from 100% to 56.5% (Na+), 52.2% (K+), 45.2% (Mg2+), and 40.1% (Ca2+) at pH = 7 and an IS of 0.5 M. In addition to the cation valence, the hydration forces and ionic radii of the metal cations might be other factors that affected the interactions of metal cations with ZnO NPs. Finally, the total interaction energy between ZnO NPs was calculated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical formula, and the calculated results were in agreement with the experimental outcomes under various aquatic environmental conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据