4.7 Article

Enhanced removal of the endocrine disruptor compound Bisphenol A by adsorption onto green-carbon materials. Effect of real effluents on the adsorption process

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 266, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2020.110604

关键词

Activated carbon; Adsorption; Bisphenol A; Real water matrices

资金

  1. Spanish MICINN [CTM2017-84033-R]
  2. Regional Government of Madrid [IND2017/AMB-7720, S2018/EMT-4341]
  3. European Social Fund

向作者/读者索取更多资源

The high exposure to the endocrine disrupting compounds (EDC) in water represents a relevant issue for the health of living beings. The xenoestrogen Bisphenol A (BPA), a suspected EDC, is an industrial additive broadly used for manufacturing polycarbonate and epoxy resins. Due to its harmful effect in humans and the aquatic environment, an efficient method to remove BPA from wastewater is urgently required. The present work aims to study the adsorption of BPA from aqueous solutions onto carbonaceous materials, e.g., a synthesized carbon xemgel (RFX), a chemical-activated carbon from Kraft lignin (KLP) and a commercial activated carbon (F400) for comparative purposes. Batch kinetic and adsorption tests of BPA in ultrapure water were accomplished, finding higher adsorption capacities of BPA onto both F400 activated carbon (q(sat) = 407 mg g(-1)) and the biochar KLP (q(sat) = 220 mg g(-1)), versus to that obtained for the xerogel (q(sat) = 78 mg g(-1)). Furthermore, kinetic experiments revealed faster kinetic adsorption for RFX and KLP materials, achieving the equilibrium time within 24 h, attributed to their more-opened porous structure. Pseudo-first order, pseudo-second order, Elovich, intra-particle diffusion and film diffusion models were used to fit the experimental data. Thus, the BPA adsorption isotherms were analysed by Langmuir, Freundlich, Sips, Redlich-Peterson and Dual-site Langmuir (DLS) isotherm models.In addition, the influence of different aqueous matrices, such as a hospital wastewater, a wastewater treatment plant (WWTP) effluent and a river water, on BPA removal efficiency has been explored. These adsorption tests revealed a clear competitive effect between the target compound (BPA) and the natural organic matter content (NOM) present in the matrices for the active sites, resulting in a high decreasing of BPA adsorption removal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据