4.4 Article

Optimization of the Process Parameters for Hydrotreating Used Cooking Oil by the Taguchi Method and Fuzzy Logic

出版社

ASME
DOI: 10.1115/1.4047405

关键词

alternative energy sources; energy from biomass; renewable energy; hydrotreating process

向作者/读者索取更多资源

Hydrotreating process is an alternate approach for producing diesel hydrocarbons from the biomass-based oils. In the present study, used cooking oil was selected for the hydrotreating process due to its high abundance. A batch reactor was used for carrying out the experiments. To increase the reaction rate a manganese, cerium promoted ruthenium-based catalyst supported on Al2O3 was used. The design of experiments was used for optimizing the process parameters. The Taguchi method was selected as it reduces the number of experiments which saves time and money. The study was aimed at increasing the conversion percentage and diesel selectivity and reducing the naphtha selectivity. Since multi-objective optimization was required, fuzzy logic was incorporated which utilizes the human thought logic. The analysis of variance shows that the reaction temperature and reaction pressure significantly affect the output parameters. Higher temperature leads to cracking of the oil resulting in the formation of large amount of lower carbon chains. Moreover, high hydrogen pressure results in increase in the hydrogenation process, thereby increasing the diesel selectivity. The optimized parameters obtained from the study were 360 degrees C reaction temperature, 40-bar initial reaction pressure, and 200-min reaction time. Confirmation experiment was carried out using these parameters, and the conversion efficiency and diesel selectivity was 89.7% and 88.2%, respectively. The study shows that the combination of Taguchi and fuzzy logic is an effective method for optimizing the process parameters of the hydrotreating process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据