4.5 Article

Improved Electrical and Thermal Aging Properties of DBSA-Doped PANI Using MWCNT and GO

期刊

JOURNAL OF ELECTRONIC MATERIALS
卷 49, 期 9, 页码 5326-5334

出版社

SPRINGER
DOI: 10.1007/s11664-020-08256-x

关键词

polyaniline; graphene oxide; carbon nanotube; de-doping; stability; conductivity

向作者/读者索取更多资源

Electrical conductivity deterioration of polyaniline (PANI) at elevated temperatures has limited its applications for commercial usages. In this study we endeavored to improve the thermal aging resistance of PANI and its conductivity stability at elevated temperatures using a high molecular weight dopant, dodecylbenzenesulfonic acid (DBSA), along with the addition of carbon-based nanoparticles. DBSA-doped PANI (DBSA-PANI) and its nanocomposites with graphene oxide (PANI/GO) and multi-walled carbon nanotube (PANI/MWCNT) were prepared throughin situpolymerization. The samples were aged at 90 degrees C up to 1000 h and characterized by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), and electrical conductivity measurements. It was observed that electrical conductivity deteriorates more rapidly in DBSA-PANI than in GO and MWCNT nanocomposites. The FTIR results confirmed a strong retention of DBSA groups in the nanocomposites after aging, but not for DBSA-PANI. This showed more stability of DBSA dopant in PANI/GO and PANI/CNT. The characteristic time (tau), as a criterion for thermal stability, was found to be 91, 172, and 295 h for DBSA-PANI, PANI/MWCNT, and PANI/GO, respectively. It was suggested that the retardation of the de-doping process is the major reason for the higher tau value and more electrical conductivity stability of PANI/GO. The obtained thermal stability for the electrical conductivity of DBSA doped PANI/GO nanocomposites was nearly 30 times higher than that of HCl-doped PANI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据