4.7 Article

Reprint of Electrochemical oxidation of lignin at electrochemically reduced TiO2 nanotubes

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jelechem.2020.114528

关键词

TiO2 nanotubes; Lignin; Electrochemical oxidation; Electrocatalysis

资金

  1. Natural Sciences and Engineering Research Council of Canada [RGPIN-2015-06248]
  2. NSERC
  3. Canada Foundation for Innovation (CFI)

向作者/读者索取更多资源

For this study, the electrochemical oxidation of lignin was investigated at the surfaces of electrochemically (EC) reduced TiO2 nanotube arrays. The effects of nanotube lengths on the lignin oxidation were explored by growing the nanotubes with different lengths through anodization. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and electron paramagnetic resonance (EPR) techniques were employed to characterize the fabricated TiO2 nanotubes. The electrochemical behaviors of the nanotubes before and after the EC treatment were assessed by various electrochemical methods, including cyclic voltammetry (CV), chronopotentiometry (CP), and impedance spectroscopy. The TiO2 nanotubes were treated by applying a cathodic current (5 mA cm(-2)) for 10 min, which significantly increased its electrocatalytic activity. It was also determined that the nanotube length was linearly increased with the increase of the anodization time, and that the longer the nanotubes and the larger the double layer capacitance. The length of the nanotubes had a significant effect on the level of lignin oxidation, and an optimal TiO2 nanotube length that enabled the most efficient oxidation of lignin was determined. The efficiency of the TiO2 electrodes towards the oxidation of lignin was also compared to a Pt electrode. The TiO2 nanotubes that were grown for 16 h by anodization with similar to 13.5 mu m length exhibited the lowest impedance and the highest lignin oxidation efficacy. The total organic carbon (TOC) of the lignin solution under different oxidation times was also measured to further evaluate the efficiency of the electrochemical degradation of lignin, and 70% TOC removal was achieved in 3 h. The TiO2 electrodes were shown to outperform the Pt electrode in all the lignin oxidation studies. Moreover, the activation energy required for the electrochemical oxidation of lignin was investigated by performing the oxidation under various temperatures and found to be 21.0 kJ mol(-1). The EC reduced TiO2 nanotube electrode showed high activity and stability, promising for environmental applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据