4.7 Article

2-Methylimidazole-mediated hierarchical Co3O4/N-doped carbon/short-carbon-fiber composite as high-performance electromagnetic wave absorber

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 574, 期 -, 页码 1-10

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2020.04.037

关键词

Layered double hydroxide; ZIF-67; Interfacial polarization; Electromagnetic wave absorption

资金

  1. National Science Foundation of China [51872238, 21806129]
  2. Fundamental Research Funds for the Central Universities [3102018zy045, 3102019AX11]
  3. Natural Science Basic Research Plan in Shaanxi Province of China [2020JM-118, 2017JQ5116]

向作者/读者索取更多资源

At present, efficient and stable low-cost electromagnetic (EM) wave absorbing materials have been widely explored, but further improvement is still necessary. In this research, three types of hierarchical Co3O4/N-doped carbon/short carbon fiber (SCF) composites with different assembly structures were produced by annealing the ZIF-67/SCF and Co-LDHs/SCF precursors at 700 degrees C. The obtained Co3O4/N-doped carbon particles were uniformly attached on SCF in the form of nanocages or thin layer to compose a unique hierarchical structure. Notably, all three composites displayed high-performance EM wave absorption with a low filling ratio of only 20 wt% in paraffin matrix. Among them, cage-like Co-LDHs/ SCF derived hierarchical carbon composite demonstrates the best performance, with a broad absorption bandwidth (RL <= -10 dB) of 6.08 GHz at 2.0 mm. Such excellent properties are attributed to the formed 3D conductive network, abundant Debye dipolar relaxation centers and strong interfacial polarization. These novel lightweight 2-methylimidazole-mediated Co3O4/N-doped carbon/SCF composites are expected to show great potential in EM wave absorption fields. (C) 2020 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据