4.7 Article

A QM/MD Coupling Method to Model the Ion-Induced Polarization of Graphene

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 16, 期 8, 页码 5253-5263

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.0c00239

关键词

-

资金

  1. European Union's Horizon 2020 research and innovation programme project VIMMP [760907]
  2. EPRSC
  3. Research Lifecycle Programme at The University of Manchester
  4. EPSRC [EP/N021754/2, EP/N021754/1] Funding Source: UKRI

向作者/读者索取更多资源

We report a new Quantum Mechanical/Molecular Dynamics (QM/MD) simulation loop to model the coupling between the electron and atom dynamics in solid/liquid interfacial systems. The method can describe simultaneously both the quantum mechanical surface polarizability emerging from the proximity to the electrolyte and the electrolyte structure and dynamics. In the current setup, Density Functional Tight Binding calculations for the electronic structure calculations of the surface are coupled with classical molecular dynamics to simulate the electrolyte solution. The reduced computational cost of the QM part makes the coupling with a classical simulation engine computationally feasible and allows simulation of large systems for hundreds of nanoseconds. We tested the method by simulating both a noncharged graphene flake and a noncharged and charged infinite graphene sheet immersed in an NaCl electrolyte solution. We found that, when no bias is applied, ions preferentially remained in solution, and only cations are mildly attracted to the surface of the graphene. This preferential adsorption of cations vs anions seems to persist also when the surface is moderately charged and rules out any substantial ions/surface charge transfer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据