4.7 Article

Machine Learning Approaches toward Orbital-free Density Functional Theory: Simultaneous Training on the Kinetic Energy Density Functional and Its Functional Derivative

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 16, 期 9, 页码 5685-5694

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.0c00580

关键词

-

资金

  1. Austrian Science Fund (FWF) [P29893]
  2. Colaboratory, a free service of Google Research
  3. Austrian Science Fund (FWF) [P29893] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

Orbital-free approaches might offer a way to boost the applicability of density functional theory by orders of magnitude in system size. An important ingredient for this endeavor is the kinetic energy density functional. Snyder et al. [Phys. Rev. Lett. 2012, 108, 253002] presented a machine learning approximation for this functional achieving chemical accuracy on a one-dimensional model system. However, a poor performance with respect to the functional derivative, a crucial element in iterative energy minimization procedures, enforced the application of a computationally expensive projection method. In this work we circumvent this issue by including the functional derivative into the training of various machine learning models. Besides kernel ridge regression, the original method of choice, we also test the performance of convolutional neural network techniques borrowed from the field of image recognition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据