4.7 Article

Area and thickness dependence of Auger recombination in nanoplatelets

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 153, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0012973

关键词

-

资金

  1. National Science Foundation DMREF Program [DMR-1629361, DMR-1629601, DMR-1629383]
  2. Graduate Research Fellowship Program [DGE-1324585]
  3. University of California Lab Fee Research Program [LFR-17-477237]
  4. National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science [DE-AC02-05CH11231]
  5. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

向作者/读者索取更多资源

The ability to control both the thickness and the lateral dimensions of colloidal nanoplatelets offers a test-bed for area and thickness dependent properties in 2D materials. An important example is Auger recombination, which is typically the dominant process by which multiexcitons decay in nanoplatelets. Herein, we uncover fundamental properties of biexciton decay in nanoplatelets by comparing the Auger recombination lifetimes based on interacting and noninteracting formalisms with measurements based on transient absorption spectroscopy. Specifically, we report that electron-hole correlations in the initial biexcitonic state must be included in order to obtain Auger recombination lifetimes in agreement with experimental measurements and that Auger recombination lifetimes depend nearly linearly on the lateral area and somewhat more strongly on the thickness of the nanoplatelet. We also connect these scalings to those of the area and thickness dependencies of single exciton radiative recombination lifetimes, exciton coherence areas, and exciton Bohr radii in these quasi-2D materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据