4.5 Article

Gene expression profile of adhesion and extracellular matrix molecules during early stages of skeletal muscle regeneration

期刊

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
卷 24, 期 17, 页码 10140-10150

出版社

WILEY
DOI: 10.1111/jcmm.15624

关键词

adhesion molecules; extracellular matrix molecules; gene expression profile; skeletal muscle regeneration

资金

  1. Ministry of Research and Innovation [PN 1N/2019_19.29.01.02, 7PFE/2018]

向作者/读者索取更多资源

Skeletal muscle regeneration implies the coordination of myogenesis with the recruitment of myeloid cells and extracellular matrix (ECM) remodelling. Currently, there are no specific biomarkers to diagnose the severity and prognosis of muscle lesions. In order to investigate the gene expression profile of extracellular matrix and adhesion molecules, as premises of homo- or heterocellular cooperation and milestones for skeletal muscle regeneration, we performed a gene expression analysis for genes involved in cellular cooperation, migration and ECM remodelling in a mouse model of acute crush injury. The results obtained at two early time-points post-injury were compared to a data set from two other trauma models. Third day post-injury, when inflammatory cells invaded, genes associated with cell-matrix interactions and migration were up-regulated. After day 5, as myoblast migration and differentiation started, genes for basement membrane constituents were found down-regulated, whereas genes for ECM molecules, macrophage, myoblast adhesion, and migration receptors were up-regulated. However, the profile and the induction time varied according to the experimental model, with only few genes being constantly up-regulated. Gene up-regulation was higher, delayed and more diverse following more severe trauma. Moreover, one of the most up-regulated genes was periostin, suggestive for severe muscle damage and unfavourable architecture restoration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据