4.5 Article

Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by up-regulating the synthesis of nitric oxide and hydrogen sulfide

期刊

JOURNAL OF BIOTECHNOLOGY
卷 316, 期 -, 页码 35-45

出版社

ELSEVIER
DOI: 10.1016/j.jbiotec.2020.04.008

关键词

Silicon; Cadmium toxicity; Pepper; Nitric oxide; Hydrogen sulfide; Antioxidant system

资金

  1. Harran University
  2. King Saud University, Riyadh, Saudi Arabia [RSP-2019/116]

向作者/读者索取更多资源

The current research was aimed to observe the interactive role of silicon-generated hydrogen sulfide (H2S) and nitric oxide (NO) on tolerance of pepper (Capsicum annum L.) plants to cadmium (Cd). Thus, the pepper plants were subjected to control (no Cd) or cadmium stress with and without Si supplementation. Significant decreases were found in plant dry weights, water potential, PSII maximum efficiency, glutathione (GSH), total chlorophyll, relative water content, Ca2+ and K+ concentrations and ascorbate, but there was a significant increase in H2O2, MDA, electron leakage (EL), proline, key antioxidant enzymes' activities, and endogenous Cd, NO and H2S in the Cd-stressed plants. Silicon enhanced Cd tolerance of the pepper plants by lowering the leaf Cd concentration, oxidative stress, enhancing the antioxidant defence system, leaf Si content, photosynthetic traits and plant growth as well as the contents of NO, proline and H2S. Furthermore, foliar-applied NO scavenger, cPTIO, and that of H2S, hypotaurine (HT), significantly decreased the levels of H2S alone, but cPTIO effectively reduced the concentrations of NO and H2S accumulated by Si in the Cd-stressed plants. The positive effect of Si was eliminated by cPTIO, but not by HT, suggesting that both molecules were involved in Si-induced improvement in Cd tolerance of the pepper plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据