4.6 Article

The effect of strain on tunnel barrier height in silicon quantum devices

期刊

JOURNAL OF APPLIED PHYSICS
卷 128, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0010253

关键词

-

资金

  1. Intramural NIST DOC [9999-NIST] Funding Source: Medline

向作者/读者索取更多资源

Semiconductor quantum dot (QD) devices experience a modulation of the band structure at the edge of lithographically defined gates due to mechanical strain. This modulation can play a prominent role in the device behavior at low temperatures, where QD devices operate. Here, we develop an electrical measurement of strain based on I ( V ) characteristics of tunnel junctions defined by aluminum and titanium gates. We measure relative differences in the tunnel barrier height due to strain consistent with experimentally measured coefficients of thermal expansion ( alpha) that differ from the bulk values. Our results show that the bulk parameters commonly used for simulating strain in QD devices incorrectly capture the impact of strain. The method presented here provides a path forward toward exploring different gate materials and fabrication processes in silicon QDs in order to optimize strain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据