4.7 Article

Comparative study on the high temperature deformation behaviour of an as-cast Ni base superalloy subjected to different cooling rates after homogenization

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 849, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2020.156626

关键词

Ni base superalloy; Microstructure; High temperature; Deformation; Recrystallization; Carbides

资金

  1. Defence Research and Development Organization (DRDO)

向作者/读者索取更多资源

Medium alloyed as-cast nickel base superalloy was subjected to two different cooling rates (fast and slow) after homogenization which resulted in mono-modal and bi-modal distribution of gamma prime (gamma') precipitates. Both the materials were subjected to high temperature deformation over a range of temperatures and strain rates. Irrespective of the strain rate used, the material subjected to fast cooling exhibited high compressive yield strength and flow softening characteristics when compared to the slow cooled material in the sub-solvus regime. Detailed microstructural investigation carried out using scanning and transmission electron microscope to ascertain the micro-mechanism revealed varying precipitate - dislocation interaction mechanism in both the materials. Higher flow softening and cracking in the fast cooled material is attributed to glide plane softening due to planar slip and the presence of fine network of carbides along the grain boundaries respectively. In the super-solvus regime, the flow stress of both the materials was comparable and both the materials exhibited discontinuous dynamic recrystallization (DDRX). Further, the slow cooled material exhibited lower critical strain for DDRX initiation and also better recrystallization kinetics irrespective of the processing conditions. Higher recrystallization kinetics in the slow cooled material is attributed to the concurrent particle simulated nucleation (PSN) at the coarse MC type carbide boundaries. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据