4.7 Article

Strategy for performance enhancement of Cd1-XZnXTe/CdS core/shell quantum dot sensitized solar cells through band adjustment

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 826, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2020.154050

关键词

Cd0.64Zn0.36Te; Core/shell; Quantum dots; Solar cells

资金

  1. Natural Science Foundation of Zhejiang Province of China [LQ16B050002]

向作者/读者索取更多资源

Novel type-II core/shell structure quantum dos have been synthesized for solar cell photoelectrode material. Cd0.64Zn0.36Te and CdS were chosen as a core and shell, respectively, to generate type-II core/shell structure quantum dos (QDs). Density functional theory was employed to explore the energy structure of Cd1-xZnxTe/CdS core/shell QDs, revealing that introduction of Zn element is a feasible strategy to prepare CdTe/CdS based QDs with type-II core/shell structure. Then, Cd0.64Zn0.36Te/CdS core/shell QDs were synthesized by aqueous phase method. Microscopic measurements showed that Cd0.64Zn0.36Te/CdS core/shell QDs have high crystalline quality. Ultraviolet photoelectron spectroscopy together with optical spectra indicated an upward shift of the Cd0.64Zn0.36Te conduction band edge compared with CdTe, as also evidenced by systematic density functional theory based first principle calculation. Photoluminescence decay measurement also indicated the enhanced electron injection rate and decreased charge recombination of Cd0.64Zn0.36Te/CdS QD sensitized TiO2 films. In addition, by optimizing the deposition cycles of the CdS shell, the power conversion efficiency of Cd0.64Zn0.36Te/CdS QDs sensitized solar cells was enhanced. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据