4.7 Article

Facile Mechanochemical Approach To Synthesizing Edible Food Preservation Coatings Based On Alginate/Ascorbic Acid-Layered Double Hydroxide Bio-Nanohybrids

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 68, 期 33, 页码 8962-8975

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jafc.0c01879

关键词

layered double hydroxides (LDHs); ascorbic acid-intercalated LDHs; alginate; ascorbic acid; edible coating; mechanochemical synthesis; bionanohybrid; postharvest food loss

资金

  1. Department of Chemistry, University of Sri Jayewardenepura

向作者/读者索取更多资源

A bionanohybrid based on ascorbic acid-intercalated layered double hydroxides (LDHs) was synthesized using a facile and novel mechanochemical grinding technique, and its efficacy as an edible food coating is reported. Ascorbic acidintercalated Mg-Al-LDHs (AA-LDHs) are synthesized using a green water-assisted grinding approach. The successful synthesis of the mechanochemically ground AA-LDHs was confirmed by the shifts observed in the basal peaks of the LDHs based on a powder X-ray diffraction, changes in the positions of vibrational frequencies of ascorbic acid based on Fourier Transform Infrared Spectroscopy, and significant changes in the intensity and peak positions of the core-shell bands based on X-ray photoelectron spectroscopy. The resulting nanohybrid further demonstrates thermal stability in thermogravimetric and derivative thermogravimetric analysis. Transmission electron microscopy images of the mechanochemically synthesized AA-LDHs reveal a plate-like morphology, which is a characteristic of the hydrotalcite-like structure. In a novel application, an edible coating was prepared by blending the AA-LDHs into a biocompatible alginate matrix, and the coating was developed on freshly plucked strawberries using the dip-coating method. In order to evaluate the efficacy of the coating, the total phenolic content, pH, microbial growth, weight loss, titratable acidity, and ascorbic acid content were monitored in the coated and uncoated fruits for a period of 18 days. The results reveal that the shelf life of strawberries increases from 9 days to 15 days for the nanohybrid coated fruits, suggesting the potential food preservation applications of the nanohybrid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据