4.8 Article

Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea

期刊

ISME JOURNAL
卷 14, 期 10, 页码 2595-2609

出版社

SPRINGERNATURE
DOI: 10.1038/s41396-020-0710-7

关键词

-

资金

  1. National Natural Science Foundation of China [21777155, 21322703, 41530105, 91851210, 41907027, U1805242]
  2. USA National Science Foundation [OCE-1046017, DEB-1664052]
  3. Simons Foundation grants (SCOPE Award) [329108]
  4. Simons Postdoctoral Fellowship in Marine Microbial Ecology [548565]
  5. Florida Agricultural Experiment Station (Hatch project) [FLA-FTL-005680]
  6. UF IFAS Early Career award [00129069]
  7. Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology [ZDSYS201802081843490]
  8. Novo Nordisk Foundation [NNF16OC0021818]

向作者/读者索取更多资源

Ammonia-oxidizing archaea (AOA) are among the most abundant and ubiquitous microorganisms in the ocean, exerting primary control on nitrification and nitrogen oxides emission. Although united by a common physiology of chemoautotrophic growth on ammonia, a corresponding high genomic and habitat variability suggests tremendous adaptive capacity. Here, we compared 44 diverse AOA genomes, 37 from species cultivated from samples collected across diverse geographic locations and seven assembled from metagenomic sequences from the mesopelagic to hadopelagic zones of the deep ocean. Comparative analysis identified seven major marine AOA genotypic groups having gene content correlated with their distinctive biogeographies. Phosphorus and ammonia availabilities as well as hydrostatic pressure were identified as selective forces driving marine AOA genotypic and gene content variability in different oceanic regions. Notably, AOA methylphosphonate biosynthetic genes span diverse oceanic provinces, reinforcing their importance for methane production in the ocean. Together, our combined comparative physiological, genomic, and metagenomic analyses provide a comprehensive view of the biogeography of globally abundant AOA and their adaptive radiation into a vast range of marine and terrestrial habitats.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据