4.6 Article

Elasticity of model weakly cemented granular materials: A numerical study

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2020.02.005

关键词

Cemented granular materials; Elasticity; Discrete element method; Geomechanics

资金

  1. French National Research Agency [ANR-15-CE06-0008]

向作者/读者索取更多资源

The effect of bonding cementation on the elastic properties of model granular materials is investigated by grain-level numerical simulations. Two different morphologies are studied, bridging cementation, for which the cement concentrates in cylindrical connections, with radius a, between contacting or neighboring grains separated by a distance smaller than a certain range h(0); and grain coating, for which a cement layer with uniform thickness Delta forms on grain surfaces. Cementation is applied to spherical ball packs assembled by the discrete element method (DEM) in different isotropic states throughout the range of mechanically accessible structures, with different densities and contact connectivities. The determination of the elastic properties of the cemented material is a two stage procedure, in which (i) bond stiffnesses, and (ii) macroscopic moduli of large bond networks, are successively computed. Our treatment of stage (i) is based on a previously published model (V. Langlois, International Journal of Numerical and Analytical Methods in Geomechanics, 39(8), p. 854, 2015 (Langlois, 2015)), suitably generalized to deal with prestressed granular materials in which contacts carry a certain force prior to cementation, and with distant bonding. In stage (ii), different initial packs are compared, and the influence of the model parameters (a, h(0), Delta) is discussed. The angular elasticity of cemented bonds, for bridging cementation, may influence the macroscopic moduli for small bond coordination number and large enough bond radii, but does not affect grain-coated cemented materials. Macroscopic moduli are essentially determined by the average bond stiffness and by the bond network coordination number. Large confining stresses prior to cementation tend to stiffen the cemented material. The limit of stiff cement is shown to apply in a restricted range. As for unbonded grains, the Voigt approximation scheme for elastic moduli gives fair predictions for the bulk modulus, but rather poor ones for the shear modulus, in weakly coordinated systems. The scheme advocated by Dvorkin and Nur (Geophysics, 61(5), p. 1363, 1996 (Dvorkin and Nur, 1996)), often used in geomechanics, relies on the Voigt approximation. Though yielding correct orders of magnitude, it can be inaccurate, as it does not account for the cement content dependence of coordination numbers. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据