4.7 Article

NMR Spectroscopic Studies of Cation Dynamics in Symmetrically-Substituted Imidazolium-Based Ionic Liquid Crystals

期刊

出版社

MDPI
DOI: 10.3390/ijms21145024

关键词

ionic liquids; liquid crystals; ionic liquid crystals; molecular orientational order; NMR spectroscopy

资金

  1. Swedish Research Council VR
  2. Russian Foundation for Basic Research [17-03-00057]

向作者/读者索取更多资源

Ionic liquid crystals (ILCs) present a new class of non-molecular soft materials with a unique combination of high ionic conductivity and anisotropy of physicochemical properties. Symmetrically-substituted long-chain imidazolium-based mesogenic ionic liquids exhibiting a smectic liquid crystalline phase were investigated by solid state NMR spectroscopy and computational methods. The aim of the study was to reveal the correlation between cation size and structure, local dynamics, and orientational order in the layered mesophase. The obtained experimental data are consistent with the model of a rod-shaped cation with the two chains aligned in opposite directions outward from the imidazolium core. The alignment of the core plane to the phase director and the restricted conformations of the chain segments were determined and compared to those in single-chain counterparts. The orientational order parameterS similar to 0.5-0.6 of double-chain ionic liquid crystals is higher than that of corresponding single-chain analogues. This is compatible with the enhanced contribution of van der Waals forces to the stabilization of smectic layers. Increased orientational order for the material with Br(-)counterions, which exhibit a smaller ionic radius and higher ability to form hydrogen bonds as compared to that of BF4-, also indicated a non-negligible influence of electrostatic and hydrogen bonding interactions. The enhanced rod-shape character and higher orientational order of symmetrically-substituted ILCs can offer additional opportunities in the design of self-assembling non-molecular materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据