4.7 Article

A simplified numerical approach to hydrogen and hydrocarbon combustion in single and double-layer porous burners

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 45, 期 60, 页码 35235-35245

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2020.04.169

关键词

Porous media; Premixed flame; Superadiabatic; Combustion

向作者/读者索取更多资源

Motivated by the fuel hydrogen applications in porous combustors, as well as hydrogen production in syngas porous devices, this work shows a simplified one-dimensional, steady state heat and mass transfer model for stabilized premixed flames in porous inert media. Single-layer and double-layer porous burner are studied. The model has three conservation equations, describing the heat transfer in the solid and fluid phases and the mass transfer in the reacting flow. The model considers a plug flow and is solved numerically by using the finite volume method. The results are compared with benchmark data, depicting the superadiabatic flames and the heat recirculation process. A parametric analysis of the model reveals the effects of the porous media properties and the Lewis and Peclet numbers on the heat and mass transfer processes. Furthermore, the effects of the flame stand-off parameter in double layer porous burner are also analyzed. The results have considered the values of the dimensionless parameters based on reference data for hydrogen/air and methane/air combustion in porous burners built with SiC and Al2O3. (c) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据