4.7 Article

Influence of process parameters on enhanced hydrogen evolution from alcoholysis of sodium borohydride with a boric acid catalyst

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 45, 期 32, 页码 16193-16200

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2020.04.094

关键词

Methanolysis; Ethanolysis; Hydrolysis; H3BO3 catalyst; NaBH4; Hydrogen

资金

  1. Siirt University Research Fund [2018-SIUMUH-056]

向作者/读者索取更多资源

The hydrogen evolution via alcoholysis reaction of sodium borohydride with an H3BO3 catalyst was carried out for the first time. In the process of methanol and NaBH4 (NaBH4-MR), the effects of the H3BO3 and NaBH4 concentration, and temperature parameters were examined and evaluated. The hydrogen yields by the NaBH4-MR, NaBH4 ethanolysis (NaBH4-ER) and NaBH4 hydrolysis reactions (NaBH4-HR) with 0.2 M H3BO3 catalyst are 99, 62, and 88% compared to the theoretical hydrogen yield, respectively. The completion times of the NaBH4-MR using the H3BO3 concentrations of 0.2, 0.4, 0.5, 1 M, and saturated acid solution were about 50, 15, 10, 2 and 1 min, respectively. The hydrogen yields obtained with 50, 15, 10, 2, and 1 min for the same acid concentration values were about 100% compared to the theoretical hydrogen value. By increasing the H3BO3 concentration from 0.2 M to the saturated H3BO3 concentration, the completion time of this NaBH4-MR process was reduced by approximately 50 times, resulting in a significant result. The activation energy (Ea) of the NaBH4-MR with the H3BO3 catalyst was 57.3 kJ/mol. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据