4.7 Article

Fabrication and characterization of electrospun fatty acid form-stable phase change materials in the presence of copper nanoparticles

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 44, 期 11, 页码 8567-8577

出版社

WILEY
DOI: 10.1002/er.5543

关键词

composite fiber; copper nanoparticles (CNPs); heat transfer rate; phase change material (PCM); thermal energy storage

资金

  1. National Natural Science Foundation of China [U1507201]

向作者/读者索取更多资源

Latent heat storage system using phase change materials (PCMs) has been recognized as one of the most useful technologies for energy conservation. In this study, a novel type of fatty acid eutectic of methyl palmitate (MP) and lauric acid (LA)/polyacrylonitrile (PAN) composite phase change fiber is prepared by single electrospinning method. Additionally, copper nanoparticles (CNPs) with different mass ratio are combined for improving the thermal conductivity of the PCM. The structure and morphology of the fabricated composite PCMs are observed by scanning electron microscopy (SEM), and the thermal properties and performance are also characterized. SEM results show that the liquid fatty acid has been fully stabled by the three-dimensional structure of the fibers. Good compatibility among the components of the composites is also demonstrated. Besides, the addition of nanoparticles leads to an improved thermal conductivity by over 115.2% and a phase transition temperature 21.24 degrees C as well as a high latent heat of 85.07 J/g. Moreover, excellent thermal reliability of the phase change fiber is confirmed by multiple thermal cycles. Hence, the composite PCM prepared in this study shows a promising potential for thermal energy system such as building insulating and thermal mass regulating textiles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据