4.6 Article

A Wasserstein based two-stage distributionally robust optimization model for optimal operation of CCHP micro-grid under uncertainties

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijepes.2020.105941

关键词

Combined cooling, heating and power microgrid; Wasserstein metric; Distributionally robust optimization; Renewable energy; Demand response program

资金

  1. Fundamental Research Funds for the Central Universities [2019MS131]
  2. Major State Basic Research Development Program of China [2016YFB0900500, 2016YFB0900501]
  3. Science and Technology Project of the State Grid Corporation of China [SGNY0000CSJS1800046]

向作者/读者索取更多资源

Combined cooling, heating and power (CCHP) micro-grids are getting increasing attentions due to the realization of cleaner production and high energy efficiency. However, with the features of complex tri-generation structure and renewable power uncertainties, it is challenging to effectively optimize the operation of CCHP micro-grid. This paper proposed a novel Wasserstein based two-stage distributionally robust optimization (WTSDRO) model for the day-ahead optimal operation of CCHP micro-grid. The uncertainties of wind power (or other renewable energy sources with random power output) forecasting errors are modeled as an ambiguity set based on Wasserstein metric, which is assumed to contain all the possible probability distributions with a confidence level. In the first stage, CCHP micro-gird's operation cost is minimized according to the forecast information. In the second stage, for hedging against the perturbation of random wind power outputs, flexible resources are adjusted under the worst-case distribution within the ambiguity set. Multiple demand response programs (DRPs) are integrated to make electrical, thermal and cooling loads controllable. Finally, a reformulation approach is proposed based on strong duality theory, which equivalently transforms the WTSDRO model into a tractable MILP framework. Simulations implemented on a typical-structure CCHP micro-grid are delivered to show that our proposed model: (1) is data-driven and keeps both of the conservativeness and computational time at relatively low levels, (2) reaches effective operation results in terms of cost optimization, wind power accommodation and waste heat utilization etc. Moreover, operation cost and CO2 emission can be further saved by integrating multiple DRPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据