4.6 Article

Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijepes.2019.105790

关键词

Photovoltaic power forecasting; Meta learning; Residual network; Dense convolutional network

资金

  1. National Natural Science Foundation of China [51507052]
  2. Fundamental Research Funds for the Central Universities [2018B15414]

向作者/读者索取更多资源

The outputs of photovoltaic (PV) power are random and uncertain due to the variations of meteorological elements, which may disturb the safety and stability of power system operation. Hence, precise day-ahead PV power forecasting is crucial in renewable energy utilization, as it is beneficial to power generation schedule and short-term dispatch of the PV integrated power grid. In this study, a novel day-ahead PV power forecasting approach based on deep learning is proposed and validated. Firstly, two novel deep convolutional neural networks (CNNs), i.e. residual network (ResNet) and dense convolutional network (DenseNet), are introduced as the core models of forecasting. Secondly, a new data preprocessing is proposed to construct input feature maps for the two novel CNNs, which involves historical PV power series, meteorological elements and numerical weather prediction. Thirdly, a meta learning strategy based on multi-loss-function network is proposed to train the two deep networks, which can ensure a high robustness of the extracted convolutional features. Owing to the learning strategy and unique architectures of the two novel CNNs, they are designed into relatively deep architectures with superb nonlinear representation abilities, which consist of more than ten layers. Both point and probabilistic forecasting results are provided in the case study, demonstrating the accuracy and reliability of the proposed forecasting approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据