4.7 Article

The aryl hydrocarbon receptor promotes inflammation-induced dedifferentiation and systemic metastatic spread of melanoma cells

期刊

INTERNATIONAL JOURNAL OF CANCER
卷 147, 期 10, 页码 2902-2913

出版社

WILEY
DOI: 10.1002/ijc.33252

关键词

aryl hydrocarbon receptor; differentiation; inflammation; melanoma; metastasis

类别

资金

  1. Deutsche Forschungsgemeinschaft [SFB 854]
  2. Else Kroner-Fresenius-Stiftung [2017_Kolleg.07]

向作者/读者索取更多资源

The aryl hydrocarbon receptor (AHR) is a ligand binding-transcription factor of the basic helix-loop-helix family regulating multiple cellular functions such as differentiation, cell cycle, apoptosis, and inflammatory reactions. In neoplastic diseases, the AHR has been described to modulate proliferation and differentiation in dichotomous ways, either inhibiting or augmenting the growth of tumors. The precise role of AHR in melanoma is mostly unknown. Here, we report a functional effect of AHR activation on inflammation-induced melanoma cell dedifferentiation and the development of lung metastases in a mouse model. Via in silico analyses of The Cancer Genome Atlas human melanoma cohort, we detected a correlation between AHR expression levels and a dedifferentiated melanoma cell phenotype with an invasive gene signature, which we were able to functionally recapitulate in a panel of human melanoma cell lines. Both human and mouse melanoma cell lines upregulated AHR expression after inflammatory stimulation with tumor necrosis factor-alpha (TNF-alpha). Activation of AHR in human and mouse melanoma cell lines with the endogenous ligand formylindolo(3,2-b)carbazole (FICZ) promoted inflammation-induced dedifferentiation in vitro. Importantly, mouse melanoma cells with CRISPR/Cas9-mediated disruption of the AHR gene showed impaired in vivo tumor growth after transplantation in the skin as well as decreased numbers of spontaneous lung metastases. Taken together, our results demonstrate a functional role for AHR expression in melanoma development and metastatic progression. This provides a scientific basis for future experiments that further dissect the underlying molecular mechanisms and assess the potential for AHR inhibition as part of multimodal melanoma treatment strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据