4.7 Article

Development of anti-bacterial surfaces using a hydrophobin chimeric protein

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2020.07.301

关键词

Functional surface; Chimeric protein; Antimicrobial peptide; Hydrophobin; Bacterial biofilm

资金

  1. Ministero dell'Universita e della Ricerca Scientifica (FABR2017 -Fondo Finanziamento attivita ricerca di base)

向作者/读者索取更多资源

The search for new approaches for developing antimicrobial surfaces is a challenge of great urgency to prevent and control microbial growth on surfaces. The strategy herein proposed relies on the design of a new, simple and general tool for creating antimicrobial surfaces, based on a hydrophobin chimeric protein which fuses the adhesive self-assembling class I hydrophobin Vmh2 from Pleurotus ostreatus to the human antimicrobial peptide LL-37. The recombinant LL37-Vmh2 protein displayed both the adhesive and the antimicrobic properties of its members, and when deposited on polystyrene surface, a positive effect due to the fusion was observed in terms of both efficacy and versatility of the coating. Indeed, the chimeric protein significantly enlarges the range of pathogens affected by Vmh2 layer rendering it able to inhibit three Gram-positive and two Gram-negative pathogens, selected among the renowned biofilm producer bacteria. Confocal Laser Scanning Microscopy analysis performed on Staphylococcus epidermidis biofilms formed on coated surfaces proved that, besides inhibiting biofilm formation, the LL37-Vmh2 coating also displayed biocidal activity, since dead cells were present in the biofilm layer. The reported results open newperspectives in various fields of application of LL37, and of antimicrobial peptides in general. LL37-Vmh2 increases the inventory of chimeric hydrophobins, further proving their effectiveness and versatility in surface functionalization. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据