4.7 Article

Chitosan, magnetite, silicon dioxide, and graphene oxide nanocomposites: Synthesis, characterization, efficiency as cisplatin drug delivery, and DFT calculations

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2020.03.106

关键词

Magnetic chitosan nanostructures; DFT calculations; Cis-platin drug delivery

向作者/读者索取更多资源

Drug delivery systems with controlled release have been considered important tools for the treatment of various diseases. The efficacy of the drug can be enhanced by increasing its solubility, stability, bioavailability, and specific site delivery. Herein, we investigated cisplatin (cisP) loading efficacy and release potentiality on chitosan (CS) functionalized with magnetite (M), silicon dioxide (S), and graphene oxide (GO) nanoparticles. Different nanocomposites [chitosan-coated magnetite, silicon dioxide, and graphene oxide (CS/M/S/GO); chitosan-coated magnetite and silicon dioxide (CS/M/S); chitosan-coated silicon dioxide (CS/S); and chitosan-coated magnetite (CS/M)] were prepared. The prepared nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). DFT calculations were employed to explore the interaction mechanism of cisP with a selected chitosan-functionalized nanocomposite in the gas phase and water media. The UV-Vis spectroscopy was used to study cisP loading and release from the prepared nanocomposites. The results showed that the highest loading efficacy was achieved by CS/M and CS/M/S/GO nanocomposites (87% and 84% respectively). While the releasing potentiality for CS/M composite was the highest compared with the other ones (91%). (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据