4.6 Article

Lanthanide [Terbium(III)]-Doped Molecularly Imprinted Nanoarchitectures for the Fluorimetric Detection of Melatonin

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 59, 期 36, 页码 16068-16076

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.iecr.0c02387

关键词

-

资金

  1. Scientific and Technological Research Council (TUBITAK) of the Republic of Turkey [113 M 919]

向作者/读者索取更多资源

Polymerizable terbium(III) complex-based fluorescent molecular imprinted smart nanoparticles were synthesized for the quantitative determination of potential metabolic destitution biomarkers. Melatonin has been reported to be one of the key factors in seasonal affective disorder (SAD) and was chosen as a model metabolite to demonstrate a novel molecularly imprinted polymer (MIP) nanoparticle sensor. We exploited lanthanide ion complexes in our biosensing platforms due to their deeper penetration ability, negligible autofluorescence, lack of photobleaching and photoblinking, and their sharp absorption and emission bands, extreme photostability, and long lifetime. Given the high affinity of lanthanide ions for carboxylic acid groups, we used two amino acid-based functional monomers, N-methacryloyl-L-tryptophan and N-methacryloyl-L-aspartic acid, to coordinate terbium-(III) ions and melatonin, respectively. The fluorescent MIP nanoparticles were synthesized using a miniemulsion polymerization technique after forming complexes between terbium(III):MA-Asp and melatonin:MATrp molecules. Due to the polymerizability of lanthanide complexes, they were readily inserted into the polymeric chain, which enabled homogeneous distribution as well as closer orientation to the imprinted cavities for selective melatonin recognition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据