4.7 Article

Intelligent Reflecting Surface Meets OFDM: Protocol Design and Rate Maximization

期刊

IEEE TRANSACTIONS ON COMMUNICATIONS
卷 68, 期 7, 页码 4522-4535

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCOMM.2020.2981458

关键词

Channel estimation; OFDM; Wireless communication; Resource management; Protocols; Training; Array signal processing; Intelligent reflecting surface (IRS); passive array optimization; power allocation; OFDM; channel estimation

向作者/读者索取更多资源

Intelligent reflecting surface (IRS) is a promising new technology for achieving both spectrum and energy efficient wireless communication systems in the future. However, existing works on IRS mainly consider frequency-flat channels and assume perfect knowledge of channel state information (CSI) at the transmitter. Motivated by the above, in this paper we study an IRS-enhanced orthogonal frequency division multiplexing (OFDM) system under frequency-selective channels and propose a practical transmission protocol with channel estimation. First, to reduce the overhead in channel training as well as exploit the channel spatial correlation, we propose a novel IRS elements grouping method, where each group consists of a set of adjacent IRS elements that share a common reflection coefficient. Based on this method, we propose a practical transmission protocol where only the combined channel of each group needs to be estimated, thus substantially reducing the training overhead. Next, with any given grouping and estimated CSI, we formulate the problem to maximize the achievable rate by jointly optimizing the transmit power allocation and the IRS passive array reflection coefficients. Although the formulated problem is non-convex and thus difficult to solve, we propose an efficient algorithm to obtain a high-quality suboptimal solution for it, by alternately optimizing the power allocation and the passive array coefficients in an iterative manner, along with a customized method for the initialization. Simulation results show that the proposed design significantly improves the OFDM link rate performance as compared to the case without using IRS. Moreover, it is shown that there exists an optimal size for IRS elements grouping which achieves the maximum achievable rate due to the practical trade-off between the training overhead and IRS passive beamforming flexibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据