4.8 Article

Concurrent shifts in wintering distribution and phenology in migratory swans: Individual and generational effects

期刊

GLOBAL CHANGE BIOLOGY
卷 26, 期 8, 页码 4263-4275

出版社

WILEY
DOI: 10.1111/gcb.15151

关键词

Cygnus columbianus bewickii; generational shift; global warming; individual plasticity; short-staying; short-stopping

资金

  1. NWO-NPP [866.15.206]

向作者/读者索取更多资源

Range shifts and phenological change are two processes by which organisms respond to environmental warming. Understanding the mechanisms that drive these changes is key for optimal conservation and management. Here we study both processes in the migratory Bewick's swan (Cygnus columbianus bewickii) using different methods, analysing nearly 50 years of resighting data (1970-2017). In this period the wintering area of the Bewick's swans shifted eastwards ('short-stopping') at a rate of similar to 13 km/year, thereby shortening individual migration distance on an average by 353 km. Concurrently, the time spent at the wintering grounds has reduced ('short-staying') by similar to 38 days since 1989. We show that individuals are consistent in their migratory timing in winter, indicating that the frequency of individuals with different migratory schedules has changed over time (a generational shift). In contrast, for short-stopping we found evidence for both individual plasticity (individuals decrease their migration distances over their lifetime) and generational shift. Additional analysis of swan resightings with temperature data showed that, throughout the winter, Bewick's swans frequent areas where air temperatures are c. 5.5 degrees C. These areas have also shifted eastwards over time, hinting that climate warming is a contributing factor behind the observed changes in the swans' distribution. The occurrence of winter short-stopping and short-staying suggests that this species is to some extent able to adjust to climate warming, but benefits or repercussions at other times of the annual cycle need to be assessed. Furthermore, these phenomena could lead to changes in abundance in certain areas, with resulting monitoring and conservation implications. Understanding the processes and driving mechanisms behind population changes therefore is important for population management, both locally and across the species range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据