4.8 Article

Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils

期刊

GLOBAL CHANGE BIOLOGY
卷 26, 期 8, 页码 4559-4571

出版社

WILEY
DOI: 10.1111/gcb.15134

关键词

arctic; below-ground; isotopes; mycorrhiza; priming; radiocarbon; rhizosphere; root; shrub; vegetation change

资金

  1. NERC as part of the NERC Arctic Programme [NE/K000284/1]
  2. NERC [NE/N015460/1]
  3. NERC [NE/K000284/2, NE/K000225/1, NE/N015460/1, NE/K000284/1] Funding Source: UKRI

向作者/读者索取更多资源

Carbon cycle feedbacks from permafrost ecosystems are expected to accelerate global climate change. Shifts in vegetation productivity and composition in permafrost regions could influence soil organic carbon (SOC) turnover rates via rhizosphere (root zone) priming effects (RPEs), but these processes are not currently accounted for in model predictions. We use a radiocarbon (bomb-C-14) approach to test for RPEs in two Arctic tall shrubs, alder (Alnus viridis(Chaix) DC.) and birch (Betula glandulosaMichx.), and in ericaceous heath tundra vegetation. We compare surface CO(2)efflux rates and(14)C content between intact vegetation and plots in which below-ground allocation of recent photosynthate was prevented by trenching and removal of above-ground biomass. We show, for the first time, that recent photosynthate drives mineralization of older (>50 years old) SOC under birch shrubs and ericaceous heath tundra. By contrast, we find no evidence of RPEs in soils under alder. This is the first direct evidence from permafrost systems that vegetation influences SOC turnover through below-ground C allocation. The vulnerability of SOC to decomposition in permafrost systems may therefore be directly linked to vegetation change, such that expansion of birch shrubs across the Arctic could increase decomposition of older SOC. Our results suggest that carbon cycle models that do not include RPEs risk underestimating the carbon cycle feedbacks associated with changing conditions in tundra regions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据