4.6 Article

Assessing genetic diversity and population structure of sugarcane cultivars, progenitor species and genera using microsatellite (SSR) markers

期刊

GENE
卷 753, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.gene.2020.144800

关键词

Microsatellite (SSR) markers; Saccharum complex; Saccharum species; Genetic diversity; Population structure; Principal component analysis (PCA)

资金

  1. Department of Cane and sugar Industry, Govt.

向作者/读者索取更多资源

Sugarcane is one among the most important commercial crops used to produce sugar, ethanol, and other byproducts, which significantly contributes in the GDP of India and many other countries around the world. Genetic diversity is a platform for any breeding program of a plant species. Estimation of the genetic variability and population structure play a vital role for conservation planning and management of plant genetic resources. Genetic variability serves as a source of noble alleles responsible for key agronomic and quality traits, which ultimately form basis for identification and selection of promising parents for breeding programs. In the present study genetic diversity and population structure of 139 accessions of the genus Saccharum, allied genera of family Poaceae and cultivars were assessed using informative microsatellite (SSR) markers. A sum of 427 alleles was produced using 61 polymorphic primers and number of alleles generated was ranged from 2 to 13 with an average of 7 alleles per locus. PIC values were ranged from 0.35 to 0.90, with a mean value of 0.66 for all the markers evaluated. Cluster analysis based on UPGMA method revealed three major clusters which were further subdivided into nine subclusters. Population structure analysis also established three subpopulations of used accession set, however there were no correlation of sub-groupings with that of place of origin. AMOVA analysis also confirmed that 83% and 17% of total variations were attributed to the within- and between-populations, correspondingly, demonstrating greater exchange of gene pool across places of origin. The principal component analysis (PCA) demonstrated the distribution of accessions in the scatter-plot was substantially dispersed, revealing rich genetic diversity among accessions of different species. The findings from this study will be useful in breeding programs for introgression of noble alleles into modern cultivars by exploiting natural genetic variation existing in sugarcane genetic resources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据