4.6 Article

The identification of an R2R3-MYB transcription factor involved in regulating anthocyanin biosynthesis in Primulina swinglei flowers

期刊

GENE
卷 752, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.gene.2020.144788

关键词

Primulina swinglei; MYB transcription factor; Anthocyanin; Transient assay

资金

  1. National Natural Science Foundation of China [31501799]
  2. Natural Science Foundation of Guangdong Province, China [2017A030313126]

向作者/读者索取更多资源

Primulina genus is an ideal wild ornamental flower and emerging model for studying biosynthesis, diversity, and evolution of flower pigment. However, the molecular mechanism underlying anthocyanin biosynthesis and regulation in Primulina remains unknown. Here, changes in anthocyanin content and the expression profiles of anthocyanin biosynthetic structural genes were examined in developing Primulina swinglei flowers and three other organs. Seventy-three R2R3-MYB transcription factor genes were identified from transcriptome of P. swinglei flowers, two of which, PsMYB1 and PsMYB2, are candidate regulators of anthocyanin biosynthesis according to clustering analysis. Furthermore, transient over-expression studies using tobacco leaves showed distinct pigment accumulation following co-infection with PsMYB1 and MrbHLH1 (a previously confirmed anthocyanin regulator from Morella rubra). Additionally, dual luciferase assays showed that PsMYB1 trans-activated the PsANS promoter, with the addition of MrbHLH1 resulting in a 5-fold increase in the intensity of this interaction. PsMYB1 did not, however, have any effect on the PsF3H promoter. The expression profile and dual luciferase assays showed that PsMYB2 plays no roles in anthocyanin regulation. Therefore, PsMYB1 is proposed to be the transcription factor gene regulating anthocyanin biosynthesis in P. swinglei.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据