4.6 Article

Investigation of the 2013 Alberta flood from weather and climate perspectives

期刊

CLIMATE DYNAMICS
卷 48, 期 9-10, 页码 2881-2899

出版社

SPRINGER
DOI: 10.1007/s00382-016-3239-8

关键词

2013 Alberta flood; Land-atmosphere; Orographic forcing; Hydrology; Climate change; Event attribution

资金

  1. Natural Sciences and Engineering Research Council of Canada-Climate Change and Atmospheric Research (NSERC-CCAR) Program

向作者/读者索取更多资源

During 19-21 June 2013 a heavy precipitation event affected southern Alberta and adjoining regions, leading to severe flood damage in numerous communities and resulting in the costliest natural disaster in Canadian history. This flood was caused by a combination of meteorological and hydrological factors, which are investigated from weather and climate perspectives with the fifth generation Canadian Regional Climate Model. Results show that the contribution of orographic ascent to precipitation was important, exceeding 30 % over the foothills of the Rocky Mountains. Another contributing factor was evapotranspiration from the land surface, which is found to have acted as an important moisture source and was likely enhanced by antecedent rainfall that increased soil moisture over the northern Great Plains. Event attribution analysis suggests that human induced greenhouse gas increases may also have contributed by causing evapotranspiration rates to be higher than they would have been under pre-industrial conditions. Frozen and snow-covered soils at high elevations are likely to have played an important role in generating record streamflows. Results point to a doubling of surface runoff due to the frozen conditions, while 25 % of the modelled runoff originated from snowmelt. The estimated return time of the 3-day precipitation event exceeds 50 years over a large region, and an increase in the occurrence of similar extreme precipitation events is projected by the end of the 21st century. Event attribution analysis suggests that greenhouse gas increases may have increased 1-day and 3-day return levels of May-June precipitation with respect to pre-industrial climate conditions. However, no anthropogenic influence can be detected for 1-day and 3-day surface runoff, as increases in extreme precipitation in the present-day climate are offset by decreased snow cover and lower frozen water content in soils during the May-June transition months, compared to pre-industrial climate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据