4.6 Article

Evaluation of pyrolysis chars derived from marine macroalgae silage as soil amendments

期刊

GLOBAL CHANGE BIOLOGY BIOENERGY
卷 12, 期 9, 页码 706-727

出版社

WILEY
DOI: 10.1111/gcbb.12722

关键词

agronomic performance; biochar; biorefining; fertilizer; seaweed; thermo-catalytic reforming

资金

  1. Engineering and Physical Sciences Research Council [EP/K014900/1]
  2. Biotechnology and Biological Sciences Research Council [BBS/E/W/0012843B]
  3. European Regional Development Fund [80851]
  4. BBSRC [BBS/E/W/0012843B] Funding Source: UKRI
  5. EPSRC [EP/K01479X/1, EP/K014765/1, EP/K014900/1] Funding Source: UKRI

向作者/读者索取更多资源

Pyrolysis char residues from ensiled macroalgae were examined to determine their potential as growth promoters on germinating and transplanted seedlings. Macroalgae was harvested in May, July and August from beach collections, containing predominantlyLaminaria digitataandLaminaria hyperborea; naturally seeded mussel lines dominated bySaccharina latissima; and lines seeded with cultivatedL. digitata. Material was ensiled, pressed to pellets and underwent pyrolysis using a thermo-catalytic reforming (TCR) process, with and without additional steam. The chars generated were then assessed through proximate and ultimate analysis. Seasonal changes had the prevalent impact on char composition, though using mixed beach-harvested material gave a greater variability in elements than when using the offshore collections. Applying the char at 5% (v/v)/2% (w/w) into germination or seedling soils was universally negative for the plants, inhibiting or delaying all parameters assessed with no clear advantage in harvesting date, species or TCR processing methodology. In germinating lettuce seeds, soil containing the pyrolysis chars caused a longer germination time, poorer germination, fewer true leaves to be produced, a lower average plant health score and a lower final biomass yield. For transplanted ryegrass seedlings, there were lower plant survival rates, with surviving plants producing fewer leaves and tillers, lower biomass yields when cut and less regrowth after cutting. As water from the char-contained plant pots inhibited the lettuce char control, one further observation was that run-off water from the pyrolysis char released compounds which detrimentally affected cultivated plant growth. This study clearly shows that pyrolysed macroalgae char does not fit the standard assumption that chars can be used as soil amendments at 2% (w/w) addition levels. As the bioeconomy expands in the future, the end use of residues and wastes from bioprocessing will become a genuine global issue, requiring consideration and demonstration rather than hypothesized use.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据