4.7 Article

On Internet-of-Things (IoT) gateway coverage expansion

出版社

ELSEVIER
DOI: 10.1016/j.future.2020.02.031

关键词

Gateway coverage expansion; Hops distance; Hops Voronoi diagram; IoT network; Mesh network; Overlapped routers

向作者/读者索取更多资源

The Internet of Things (IoT) has developed rapidly in recent years where significant numbers of devices have been connected to the network and this will increase over the ensuing years. There is also a trend to shift the IoT topology from cloud computing to fog computing where computing logic is brought as nearest as possible to the sensors. One of the topologies that is commonly used in fog computing is the mesh network. In a mesh network, end point nodes/sensors are connected to other nodes with routing capabilities called routers, and these nodes are connected to gateways where the mesh can communicate with other meshes or clouds. In multi-gateway mesh networks, each gateway may have set of routers that is fully depended on the gateway to forward the data to the clouds. Mesh is a complex network structure and the overall performance of the networks can be affected by several issues, such as overload gateways, network latency and gateway failover. In this paper, we compare the ordinary Network Voronoi Diagram (NVD) with Hops Voronoi diagram (HVD) to distribute the gateway workload based on network hops; and extend these methods to identify the overlapped routers for gateway failover. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据