4.7 Article

Optimization, kinetic and thermodynamic studies on sustainable biodiesel production from waste cooking oil: An Indian perspective

期刊

FUEL
卷 273, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.117725

关键词

Waste cooking oil; Transesterification; Biodiesel; Optimization; Kinetics; Thermodynamic analysis

向作者/读者索取更多资源

In India, the biodiesel industry is promising and growing at a rapid rate. Several attempts have been made using non edible feedstock to develop the commercial and sustainable biodiesel industry. In this perspective, this study has aimed to optimize four main factors; catalyst quantity, methanol: waste cooking oil molar ratio, mixing intensity and reaction time, which would influence the conversion of waste cooking oil to biodiesel. Response surface methodology integrated with desirability function approach was used to determine the best operative conditions. The optimal reaction parameters for maximum biodiesel yield (90 +/- 0.25%) were identified as 0.6%w/w catalyst loading, 10.6:1 methanol to waste cooking ratio, 559 rpm mixing intensity and 63 min reaction time. The study of reaction kinetics revealed that the experimental data followed the first order reaction kinetics and the energy required to activate the molecules to undergo chemical transformation was calculated as 57.82 kJ/mol. The important thermodynamic parameters such as enthalpy (Delta H), entropy (Delta S), and the Gibbs free energy (Delta G) were estimated to assess the characteristics of the transesterification process. The values of the thermodynamic parameters were found to be Delta H = 55.09 kJ/mol, Delta S =-0.103 kJ/mol K and Delta G = 89.90 kJ/mol, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据