4.7 Article

Validation of analytical methods for the detection of beeswax adulteration with a focus on paraffin

期刊

FOOD CONTROL
卷 120, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodcont.2020.107503

关键词

Beeswax; Adulteration; Paraffin; Stearin; Stearic acid; Analytical methods; Validation

向作者/读者索取更多资源

Beeswax adulteration is a global issue in the apiculture sector, lacking clearly defined purity criteria and official quality controls. Traditional physico-chemical analysis methods show inconsistencies in detecting adulterants. This study analyzed a wide range of analytical methods and purity criteria for detecting common beeswax adulterants, suggesting a combination of traditional methods with advanced analytical tools for reliable detection.
Beeswax adulteration in the apiculture sector represents a growing problem worldwide due to the lack of clearly defined purity criteria, the absence of official quality (authenticity) controls, and the inconsistency of the analytical methods used for adulteration detection. Although beeswax authentication is implemented in other regulatory sectors (pharmaceutical and food industry), the classical physico-chemical analytical methods used for determination of beeswax purity exhibit inconsistencies for the detection of adulterants. In this study, an inventory was made on a comprehensive set of analytical methods and the corresponding purity criteria used for the detection of the most common beeswax adulterants (paraffin, stearin and/or stearic acid) from existing legislations and scientific literature. The selected analytical methods (classical physico-chemical, and advanced instrumental, i.e. chromatographic and spectroscopic analytical techniques) were weighted by three independent experts against two criteria: feasibility and analytical performance in detecting targeted adulterants. Classical methods for which measurement data were available (melting point and acid/saponification/ester values for paraffin-adulterated vs. non-adulterated beeswax samples) were retained and further validated by a receiver operating characteristic (ROC) analysis. These methods were also validated by generating the corresponding calibration curves for paraffin detection using paraffin-beeswax mixtures containing different proportions of paraffin (ranging from 5 to 95%, w/w). The results of the ROC analysis revealed that a tentative detection of paraffin in beeswax can be achieved by a combination of at least two physico-chemical methods. However, for a reliable detection of the most common adulterants in beeswax, physico-chemical methods should be complemented with advanced analytical tools. i.e. GC-MS, HTGC-FID (MS) and/or FTIR-ATR spectroscopy, depending on the expected adulterant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据