4.7 Article

miR-196b-5p controls adipocyte differentiation and lipogenesis through regulating mTORC1 and TGF-β signaling

期刊

FASEB JOURNAL
卷 34, 期 7, 页码 9207-9222

出版社

WILEY
DOI: 10.1096/fj.201901562RR

关键词

adipogenesis; lipogenesis; mammalian target of rapamycin complex 1; microRNA; transforming growth factor-beta receptor 1; tuberous sclerosis 1

资金

  1. National Natural Science Foundation of China (NSFC) [81472040,81672116]
  2. Natural Science Foundation of Tianjin City (Tianjin Natural Science Foundation) [18JCZDJC32200]

向作者/读者索取更多资源

MicroRNAs have been reported to play a role in adipogenesis and obesity. This study was performed to investigate the role of miR-196b-5p in adipogenesis and the mechanism involved. The data revealed that miR-196b-5p expression increased in primary or established marrow stromal progenitor cells after adipogenic treatment. Supplementing miR-196b-5p in the progenitor cells stimulated adipogenic differentiation and lipogenesis, along with the induction of adipogenic and lipogenic factors. Conversely, inhibition of endogenous miR-196b-5p blocked adipogenesis and lipogenesis. Tuberous sclerosis 1 (Tsc1) and transforming growth factor-beta receptor 1 (TGFBR1) were demonstrated to be the direct target genes of miR-196b-5p. Supplementing miR-196b-5p activity in progenitor cells reduced the protein level of TSC1 and activated mammalian target of rapamycin complex 1 (mTORC1) signaling. We further demonstrated that the perturbation of TSC1 in progenitor cells altered the trend of adipogenic differentiation and lipogenesis. Overexpression of Tsc1 or inactivation of mTORC1 signaling attenuated the stimulation of adipogenic differentiation and lipogenesis by miR-196b-5p. Overexpression of Tgfbr1 also partially blocked the adipogenic effect of miR-196b-5p. Further investigations demonstrated that zinc finger E-box-binding homeobox 1 (ZEB1) transcriptionally upregulated miR-196b-5p expression. The current study suggests that miR-196b-5p promotes adipogenic differentiation and lipogenesis in progenitor cells through targeting TSC1 and TGFBR1 and therefore regulating mTORC1 and TGF-beta signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据