4.7 Article

MTOR-initiated metabolic switch and degeneration in the retinal pigment epithelium

期刊

FASEB JOURNAL
卷 34, 期 9, 页码 12502-12520

出版社

WILEY
DOI: 10.1096/fj.202000612R

关键词

aging; AMD; lipid; metabolism; Mtor

资金

  1. NIH [R01EY026999, R01EY 028773, R01EY025218, R01-026545]
  2. NIEHS [R01ES023485, NIHS10 OD018006]
  3. BrightFocus Foundation [M2017186]
  4. Welch Foundation [Q0035]
  5. NIH/NEI grant [P30EY027125]
  6. Research to Prevent Blindness

向作者/读者索取更多资源

The retinal pigment epithelium (RPE) is a particularly vulnerable tissue to age-dependent degeneration. Over the life span, the RPE develops an expanded endo-lysosomal compartment to maintain the high efficiency of phagocytosis and degradation of photoreceptor outer segments (POS) necessary for photoreceptor survival. As the assembly and activation of the mechanistic target of rapamycin complex 1 (mTORC1) occur on the lysosome surface, increased lysosome mass with aging leads to higher mTORC1 activity. The functional consequences of hyperactive mTORC1 in the RPE are unclear. In the current study, we used integrated high-resolution metabolomic and genomic approaches to examine mice with RPE-specific deletion of the tuberous sclerosis 1 (Tsc1) gene which encodes an upstream suppressor of mTORC1. Our data show that RPE cells with constitutively high mTORC1 activity were reprogramed to be hyperactive in glucose and lipid metabolism. Lipolysis was suppressed, mitochondrial carnitine shuttle was inhibited, while genes involved in fatty acid (FA) biosynthesis were upregulated. The metabolic changes occurred prior to structural changes of RPE and retinal degeneration. These findings have revealed cellular events and intrinsic mechanisms that contribute to lipid accumulation in the RPE cells during aging and age-related degeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据