4.6 Article

Targeting efficiency of nanoliposomes on atherosclerotic foam cells: polyethylene glycol-to-ligand ratio effects

期刊

EXPERT OPINION ON DRUG DELIVERY
卷 17, 期 8, 页码 1165-1175

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/17425247.2020.1777982

关键词

Polyethylene glycol; liposome; atherosclerosis; foam cells

资金

  1. NTU - Northwestern Institute for Nanomedicine

向作者/读者索取更多资源

Background Nanoparticles that actively target tissues, with ligands attached at the extremity of polyethylene glycol (PEG) spacer, are a promising strategy to enhance target cell specificity and internalization. However, the interplay between the targeting ligands and the adjacent ligand-free PEG remains poorly understood. Research design and methods Experimentally, liposomes containing active folate ligands were firstly formulated and the optimum amount of ligand that yields the highest foam cell uptake was determined. Subsequently, ligand-free PEG was incorporated, and the effects of PEG lengths and concentrations on foam cell uptake were evaluated after the nanoparticles were incubated in human serum for 90 min. Results It was demonstrated that the targeting efficiency progressively decreased and was eventually annulled as PEG-to-ligand ratio was increased, with loss of targeting effect occurring at PEG-to-ligand ratio of >2 for PEG 750, >0.5 for PEG 2000 and Conclusions This work demonstrates that PEG-to-ligand ratio and serum coating on nanoparticle surface are both important features to be considered in the design of active targeting nanocarriers. This work also supports the development of novel active targeting nanotherapies for atherosclerosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据