4.4 Article

CHANGES IN THE INTERLAYER STRUCTURE AND THERMODYNAMICS OF HYDRATED MONTMORILLONITE UNDER BASIN CONDITIONS: MOLECULAR SIMULATION APPROACHES

期刊

CLAYS AND CLAY MINERALS
卷 64, 期 4, 页码 503-511

出版社

CLAY MINERALS SOC
DOI: 10.1346/CCMN.2016.0640412

关键词

Basin Conditions; Hydration; Molecular Dynamics Simulation; Montmorillonite; Swelling

资金

  1. National Basic Research Program of China [2012CB214803]

向作者/读者索取更多资源

Interlayer swelling of hydrated montmorillonite is an important issue in clay mineralogy. Although the swelling behavior of montmorillonite under ambient conditions has been investigated comprehensively, the effects of basin conditions on the hydration and swelling behaviors of montmorillonite have not been characterized thoroughly. In the present study, molecular dynamics simulations were employed to reveal the swelling behavior and changes in the interlayer structure of Namontmorillonite under the high temperatures and pressures of basin conditions. According to the calculation of the immersion energy, the monolayer hydrate becomes more stable than the bilayer hydrate at a burial depth of 7 km (at a temperature of 518 K and a lithostatic pressure of 1.04 kbar). With increasing burial depth, the basal spacings of the monolayer and bilayer hydrates change to varying degrees. The density-distribution profiles of interlayer species exhibit variation in the hydrate structures due to temperature and pressure change, especially in the structures of bilayer hydrate. With increasing depth, more Na+ ions prefer to distribute closer to the clay layers. The mobility of interlayer water and ions increases with increasing temperature, while increasing pressure caused the mobility of these ions to decrease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据