4.7 Article

Simultaneous removal of chromium(VI) and tetracycline hydrochloride from simulated wastewater by nanoscale zero-valent iron/copper-activated persulfate

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 27, 期 32, 页码 40826-40836

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-020-10120-8

关键词

Nanoscale zero-valent iron; Persulfate; Oxidative free radical; Cr(VI); Tetracycline hydrochloride; Removal mechanisms

向作者/读者索取更多资源

In this paper, metallic copper (Cu) was supported on nanoscale zero-valent iron (nZVI) to form a nanoscale bimetallic composite (nZVI-Cu), which was used to activate persulfate (PS) to simultaneously remove the compound contaminants Cr(VI) and tetracycline hydrochloride (TCH) in simulated wastewater. nZVI, nZVI-Cu, and nZVI-Cu-activated PS (nZVI-Cu/PS) were characterized by SEM, TEM, XRD, and XPS. The effects of the bimetallic composite on Cr(VI) and TCH removal were compared in the nZVI, nZVI-activated PS (nZVI/PS), nZVI-Cu, and nZVI-Cu/PS systems. The results showed that nZVI and Cu can form a nanobimetallic system, which can create galvanic cells; thus, the galvanic corrosion of nZVI and the transfer of electrons are accelerated. For a single contaminant, the removal efficiency of Cr(VI) and TCH is the highest when nZVI is loaded with 3 wt% and 1 wt% Cu, respectively. The ratio of nZVI-Cu with 3 wt% Cu to PS is 7:1, and the removal efficiency of Cr(VI) and TCH compound contaminants is ~ 100% after 60 min under acidic conditions, which indicates that the Cr(VI) reduction and TCH oxidation were complete in the nZVI-Cu/PS system. The mechanisms of simultaneous removal of Cr(VI) and TCH in the nZVI-Cu/PS system are proposed. The removal of Cr is because of the adsorption-reduction effects of the nZVI-Cu bimetallic material. The degradation of TCH is mainly due to the action of oxidative free radicals generated by Fe2+-activated PS. The free radical capture experiments showed that SO- 4 center dot plays a major role in the process of TCH degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据